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The Pavillet Tetrahedron is a unique orthocentric tetrahedron attached to a triangle called base triangle
(vertices A,B,C). Its has numerous properties which can be used to prove classical triangle geometry
theorems or, conversely, triangle geometry theorems can be used to prove some of its properties.
It is built from the incircle (CI) of the base triangle (radius r). The incenter (I) is the apex of the
tetrahedron, the other three vertices (A′,B′,C′) form a triangle called the upper triangle.

In the paper we consider all triangles circumscribed to a fixed incircle. Hence the apex I is fixed and
the vertices of the upper triangle A′,B′,C′, which positions are function of the tangential distance of
the vertices of the base triangle to the incircle (AA′ = AL = AM = x, . . .), describe a surface in R3.

Figure 1: The two reguli: A′B̄′ and Ā′B′.

By symmetry about the plane of the incircle, two
Pavillet tetrahedra IA′B′C′ and IĀ′B̄′C̄′ can be
built from a single base triangle. We denote H ′′

and H̄ ′′ their orthocenter and call them conjugate
tetrahedra because we show that the links be-
tween these two tetrahedra are more than a sim-
ple symmetry.

1 The hyperboloid

The simplest proof for the orthocentricity of the
tetrahedron is the fact that the sum of the square
of the length of a pair of opposite edges is a con-
stant. For this proof we use Pythagora’s Theo-
rem twice and we easily get IA′2 =AA′2+AM2+
IM2 = 2x2 + r2 because the triangle AMA′ is
right and isosceles. It implies that the slope of
A′M in the vertical plane A′AB is π

4 . We use the
same property to get C′B′2 = 2y2 + 2z2 which
yields the result. It was noted in a former arti-
cle that the same proof for the symmetric tetra-
hedron implied that the triplets A′MB̄′ and sim-
ilar are collinear. We conclude that we get the
straight line supporting B′KC̄′ from the one supporting A′MB̄′ by a rotation about a vertical axis Iz
going through the incenter and similarly for C′LĀ′. This proves that the six vertices lie on a one



sheet hyperboloid of revolution, with a vertical axis, equilateral, which has I for center of symmetry.
Obviously, the second set of generating lines are the lines such as A′LC̄′.

2 Tangent planes and polar properties

The plane of the upper triangle of one of the tetrahedra intersect the hyperboloid along a conic section
hence the tangent planes to this section envelope a second order cone. We prove that the vertex of this
cone is H̄ ′′, the orthocenter of the conjugate tetrahedron. This proof uses the fact that the segments
A′K,B′L and C′M where KLM is the contact triangle of ABC are three altitudes of the tetrahedron.

Figure 2: The orthocenters lying on the ellipsoid
inscribed in the throat circle of the hyperboloid.

Then the paper considers the pencil of planes
along a generating line. We use the fact that
the cross ratio of the tangent planes is equal to
the cross ratio of the points of tangency to add
six more interesting points (linked to the Nobbs
points) to this hyperboloid.

In a first paper, we proved that the incircle
sphere, the sphere having the incircle as great
circle, was a polar sphere of the orthocentric
group I,A′,B′,C′,H ′′. It implied that the or-
thocentric tetrahedron H ′′A′B′C′ was self-polar
about this sphere. In this paper, we prove that
the tetrahedra H ′′A′B′C′ and H̄ ′′Ā′B̄′C̄′ are polar
reciprocal about the hyperboloid.

3 The incircle ellipsoid

Then, because the orthocenters play such an im-
portant role, we also examine the locus of the or-
thocenters when A,B,C describe the plane of the
base triangle. This locus is easy to find because
the orthogonal projection of the orthocenters on the plane of the base triangle is the Gergonne point
of this triangle (Ge) and there is an invariant relation of the tetrahedron proved in the initial paper:
g2 +3n2 = r2 where g is the distance IGe and n the altitude of the orthocenter about the plane of the
base triangle n = H ′′Ge. In cylindrical coordinates, it is the equation of an oblate ellipsoid of revolu-
tion (x2 + y2 +3z2 = r2) which is inscribed in the throat circle of the hyperboloid (x2 + y2− z2 = r2).
Therefore, because, to any set of triangle vertices A,B,C correspond a single Gergonne point Ge
and because, when A,B,C describe the outer part of the incircle, Ge describes the inner part, we see
that, given a fixed circle, all the triangles circumscribed to this incircle have their conjugate Pavillet
tetrahedra attached to these two tangent and complementary surfaces.
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ABSTRACT: The Pavillet Tetrahedron is a unique orthocentric tetrahedron attached to a triangle called
base triangle. Its has numerous properties which can be used to prove triangle geometry theorems
or, conversely, triangle geometry theorems can be used to prove its properties. It is built from the
incircle of the base triangle; the incenter is called the apex of the tetrahedron, the other three vertices
form a triangle called the upper triangle. In this paper we consider the incircle as given. Hence the
apex of the tetrahedron is fixed and the vertices of the upper triangle, which positions are a function
of the tangential distance of the vertices of the base triangle to the incircle, describe a surface in
R3. While the vertices of the base triangle describe the plane of the incircle outside the incircle, the
corresponding Gergonne point of this triangle describe the inner part of the incircle. Similarly, the
orthocenter of the tetrahedron which project on the plane of the incircle as the Gergonne point of the
base triangle describe a surface. We show that the vertices of the upper triangle lie on a one sheet
equilateral hyperboloid of revolution while the orthocenter lies on an oblate ellipsoid of revolution
inscribed in the throat circle of this hyperboloid. Moreover by symmetry two Pavillet tetrahedra can be
built from a single base triangle. We call them conjugate tetrahedra because we show that the links
between these two tetrahedra created by the hyperboloid is stronger than a simple symmetry.

Keywords: Tetrahedron Hyperboloid Ellipsoid Revolution Gergonne Orthocenter

1 Introduction.

We recall that the orthocentric tetrahedron of a
scalene triangle [3], named the Pavillet tetrahe-
dron by Richard Guy and Gunther Weiss [6],
is formed by drawing from the vertices A, B
and C of a triangle ABC on the horizontal plane,
called the base triangle three vertical segments
AA′ = AM = x, BB′ = BK = y, CC′ = CL = z
where KLM is the contact triangle of ABC. We
then consider the tetrahedron IA′B′C′ (fig. 1).
The three points A′,B′,C′ form a triangle called
the upper triangle and define a plane, the upper
plane. The figure is rich in properties and various
of them have been described in [3],[2] and [4].

We can build on both sides of the plane of the
base triangle so the Pavillet tetrahedron of ABC,
IA′B′C′ has a symmetric tetrahedron; we des-
ignate the second set of vertices and points by

Ā′, B̄′,C̄′ and call this pair of tetrahedra the conju-
gate tetrahedra of the triangle. The orthocenters
of the tetrahedra will respectively be called H ′′

and H̄ ′′.

2 The Hyperboloid of revolu-
tion.

The nine points A′,B′,C′, Ā′B̄′C̄′ and K,L,M de-
fine a unique quadric surface.

Theorem 2.1 The quadric surface defined by the
six vertices of the upper triangles of the conjugate
tetrahedra and the contact triangle of the base
triangle is a one sheet equilateral hyperboloid of
revolution centered at I with a vertical axis.



Figure 1: The two reguli: A′B̄′ and Ā′B′.

Proof.

The simplest proof for the orthocentricity of the
tetrahedron is the fact that the sum of the square
of the length of a pair of opposite edges is a con-
stant. For this proof (in [3], fig. 1), we used
Pythagora’s Theorem twice and we easily got
IA′2 = AA′2 + AM2 + IM2 = 2x2 + r2 because
the triangle AMA′ is right and isosceles. It im-
plies that the slope of A′M in the vertical plane
A′AB is π

4 . We use the same property to get
C′B′2 = 2y2 + 2z2 which yields the result . It
was noted in [3, §3 - corollary 3.2] that the same
proof for the symmetric tetrahedron also implied
that the triplets A′MB̄′ and similar are collinear.
We conclude that we get the straight line support-
ing B′KC̄′ from the one supporting A′MB̄′ by a
rotation about a vertical axis Iz going through the
incenter and similarly for the straight line sup-
porting C′LĀ′. This proves that the nine vertices
lie on a one sheet hyperboloid of revolution, equi-

lateral because the slope is π

4 , which has I for
center of symmetry and CI for throat circle.

Clearly the three segments A′L, B′M and C′K lie
on one of the set of straight lines generating the
hyperboloid while the other regulus is the set to
which belong A′M, B′K and C′L.

�

The way we defined the hyperboloid is linked
only to the incircle CI and does not depend in any
way of the choice of the other components of the
triangle. Note that if CI is fixed, the choice of
A,B,C is not totally arbitrary, we can choose the
first vertex anywhere outside CI and then a sec-
ond one has to be chosen on one of the half-lines
(not going through A) supported by the tangents
to the incircle going through A. The third one
is then constrained. But any point of the plane
outside the incircle can be the vertex of a triangle
tangent to CI . Therefore, we have proved that
when a triangle has CI for incircle, its Pavillet
tetrahedron has the vertices of its upper triangle
on a equilateral hyperboloid having CI for throat
circle.

In [3] we called the sphere having the incircle
as great circle the incircle sphere, its equation
relative to the incenter is:

SI : x2 + y2 + z2 = r2. (1)

We are going to see that our set of two symmetric
tetrahedra has properties very similar relative to
the hyperboloid as one of them relative to the
incircle sphere. Hence we call this hyperboloid
the incircle hyperboloid; its equation with the
same origin is:

HI : x2 + y2− z2 = r2. (2)
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3 The tangent planes.

Theorem 3.1 The tangent plane at any vertex
of one of the upper triangle goes through the
orthocenter of the conjugate tetrahedron.

Proof.

We recall that the segments A′K,B′L and C′M
are three altitudes of the orthocentric tetrahedron
[3, §1]. Their intersection, H ′′, is such that its
projection on the plane of the base triangle is Ge,
the Gergonne point of the base triangle. This
is valid for the conjugate tetrahedron. Now the

Figure 2: The tangent plane at A′.

tangent plane to the hyperboloid at one of these
vertices is the plane define by both generatrices
going through this vertex, e.g. the tangent plane
at A′ (fig. 2) is defined by the two lines A′M and
A′L or, also, by A′B̄′ and A′C̄′ and therefore the
line C̄′M lies on the tangent plane at A′ but C̄′M
being an altitude of the conjugate tetrahedron, H̄ ′′

lies on the tangent plane to the hyperboloid at A′.

�

The intersection of the hyperboloid by an upper
plane is a conic and consequently the three tan-
gent planes at the upper vertices of one of the
tetrahedron belong to the envelope of the tangent
cone to the hyperboloid through the orthocenter.
Therefore,

Theorem 3.2 The pole of the upper plane of one
tetrahedron about the hyperboloid is the ortho-
center of its conjugate.

Remark 3.1 Note that when the intersection of
one of the upper plane with the hyperboloid is
a parabola, the angle between the upper plane
and the horizontal plane is π

4 which from [5] and
[3, §7] is known to be the special case when the
outer Soddy circle of ABC degenerates to a line.

It is easy to check that the line of intersection
of any two of the six tangent planes is either a
generatrix of the hyperboloid, an altitude of one
of the tetrahedron (excluding the one from the
apex) or a line of support of the contact triangle.

3.1 Six more points.

We recall that both upper planes intersect the base
plane along the Gergonne line of the base trian-
gle [3, §1.3]. As in [1], we call the points of
intersections of the sides of the base triangle with
the sides of the contact triangle Kg,Lg,Mg, the
Nobbs points; they are collinear and lie on the
Gergonne line of the triangle. We notice that the
tangent plane at one vertex intersects the horizon-
tal plane along a line which supports the contact
triangle, e.g. the tangent plane at A′ intersects
the base plane along LM and therefore intersects
the Gergonne line at one of the Nobbs points, Kg
such that (B,C,K,Kg) =−1.

Remark 3.2 The base triangle has to be scalene
for the general case; if it is isosceles, e.g. at
C, then M is the midpoint of AB and therefore
Mg, its harmonic conjugate is at infinity. If the
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triangle is equilateral, then the whole Gergonne
line is at infinity.

From the three Nobbs points we draw a verti-
cal line. This line will intersect the lines of
the generating sets; e.g., Kg lying on BC, the
vertical line from Kg will intersect the genera-
trix B′C̄′ at Kp and the generatrix C′B̄′ at Km.
We get six more points on our hyperboloid
(Kp,Km,Lp,Lm,Mp,Mm), the upper and lower
Nobbs points, and we look for the corresponding
tangent planes.

We already know one line of this tangent plane,
the corresponding generatrix. To get the second
one, we call ΠB′ the tangent plane at B′, ΠC̄′ the
tangent plane at C̄′, ΠKp the tangent plane at Kp,
ΠK the tangent plane at K and this one is just the
vertical plane B′KC′ because K lies on the throat
circle of the hyperboloid.

To get ΠKp , we start from (B,C,K,Kg) = −1
which implies that (B′,C̄′,K,Kp) =−1. The hy-
perboloid being a non developpable ruled surface,
we have

(B′,C̄′,K,Kp)=−1⇒
(
ΠB′,ΠC̄′,ΠK,ΠKp

)
=−1.

The pencil of these four planes is harmonic so
its intersection by any line has to be harmonic.
We examine the intersection of this pencil with
the orthocenter line, the vertical line through
Ge joining H ′′ and H̄ ′′. We already know that
ΠB′ ∩H ′′H̄ ′′ = H̄ ′′ and ΠC̄′ ∩H ′′H̄ ′′ = H ′′. Now
ΠK ∩H ′′H̄ ′′ = ∞Iz because, at K, the tangent
plane is vertical. Therefore the point of intersec-
tion of ΠKp with H ′′H̄ ′′ has to be the harmonic
conjugate of ∞Iz about H ′′ and H̄ ′′, the midpoint
of H ′′H̄ ′′. This point is the Gergonne point of the
base triangle.

We have found that ΠKp , the tangent plane at Kp,
is formed by the lines B′C̄′ and GeK =AK and we
can get to the other ones by cyclical permutations.

We have also proved

Theorem 3.3 The tangent planes to the hyper-
boloid at the upper and lower Nobbs points, inter-
sect at the Gergonne point of the triangle which
means that the Gergonne point of the base tri-
angle is the pole about the hyperboloid of the
vertical plane drawn through its Gergonne line.

Remark 3.3 The same result can be ob-
tained considering the trace of the pencil(
ΠB′,ΠC̄′,ΠK,ΠKp

)
on the horizontal plane.

4 Poles and polar properties.

In [3, §5], we proved that the incircle sphere, the
sphere having the incircle as great circle, was a
polar sphere of the orthocentric group formed by
the vertices and orthocenter of the tetrahedron
IA′B′C′. It implies that the orthocenter is the pole
of the plane of the upper triangle with respect
to this sphere. Here we have similarly proved
Theorem 3.2.

It is shown in [3, §5, Theorem 5.4] that the line
of orthocenters, GeH ′′ = H̄ ′′H ′′, is the conjugate
of the Gergonne line about the incircle sphere but
this is also true for the hyperboloid because the
conjugate of H ′′H̄ ′′ is the line of intersection of
two polar planes of points lying on this line, e.g.
H ′′ and H̄ ′′, i.e. the two upper planes which, by
symmetry intersect along the Gergonne line.

Similarly, if we consider the two altitudes going
through the apex I and therefore through the cen-
ter of both quadrics (IH ′′, IH̄ ′′), the conjugate line
has to be a line at infinity. It is the line at infinity
of the corresponding upper plane if we consider
the sphere, the line at infinity of the conjugate
upper plane if we consider the hyperboloid.

Going back to the five points I,A′,B′,C′,H ′′, it is
an orthocentric group therefore the orthocentric
tetrahedron H ′′A′B′C′ is self polar with respect to
the incircle sphere. We compare with the polar
tetrahedron of H ′′A′B′C′ with respect to the incir-
cle hyperboloid. The polar plane of one of the
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Figure 3: The plane ΠKp tangent to the hyperboloid at Kp intersects the horizontal plane along AK

orthocenters, e.g. H ′′, is the upper plane of the
conjugate tetrahedron defined by Ā′, B̄′,C̄′ while
the polar plane of a vertex of the upper trian-
gle, A′,B′,C′, is the tangent plane to the hyper-
boloid at this point so that the polar tetrahedron
is formed by one secant and three tangent planes.

Now the tangent plane at A′ is also defined by
the three points H̄ ′′, B̄′,C̄′ (Theorem 3.1, fig.
2) so that the polar tetrahedron of H ′′A′B′C′

with respect to the hyperboloid is its conjugate
H̄ ′′Ā′B̄′C̄′.

Theorem 4.1 The tetrahedra H ′′A′B′C′ and
H̄ ′′Ā′B̄′C̄′ are self polar relative to the incircle
sphere but polar reciprocal with respect to the
incircle hyperboloid.

Therefore, the polarity about the incircle sphere
keeps apart the elements of both tetrahedra while

the polarity about the hyperboloid swaps them. It
justifies the name of conjugate tetrahedra.

4.1 Normals to the hyperboloid at
the fifteen points

We can also use the orthocentric group to find
the normal to the hyperboloid at the vertices. As
mentioned, the tetrahedron H̄ ′′Ā′B̄′C̄′ is ortho-
centric and I is its orthocenter. Therefore IĀ′ is
orthogonal to the plane H̄ ′′B̄′C̄′ but this plane is
the tangent plane to the hyperboloid at A′ (fig. 2).

Therefore we have proved that the normal to the
hyperboloid at one of the vertices of the tetrahe-
dra is the parallel to the edge of the conjugate
tetrahedra joining the apex to the corresponding
conjugate vertex.
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These normal will intersect the axis of the hyper-
boloid, the vertical line through the incenter Iz
(fig. 2), because it is a surface of revolution. As
shown on the following projection on the vertical
plane IAA′, the altitude of the point of intersec-
tion is twice the tangential distance of the vertex
of the base triangle to the incircle (x = AL = AM)
and Ā′A′ = InA′ = 2x.

I

A′

x

x

Ā′
n

H̄ ′′

Iz

A

nA′

x

x

To find the normal to the upper and lower Nobbs
point, e.g. Kp, we can use the fact that the rela-
tionship between the normal to the hyperboloid
on a generator (here B′,C̄′,K,Kp) and the corre-
sponding point is algebraic and one to one. Then
the cross ratio is preserved and because the set(
B′,C̄′,K,Kp

)
is harmonic then the intersection

of the normals at these points with the axis of
the hyperboloid is also harmonic. The normals
at B′ and C̄′ are known from above and intersect
the axis at nB′ and nC̄′ . The tangent plane at K
being vertical, the normal is the line KI which
intersects the axis Iz at I, therefore the normal at
Kp intersects the axis at nKp harmonic conjugate
of I about nB′ and nC̄′ . Hence, we can either con-
struct nKp geometrically or compute its altitude

znkp with the equation

(
znkp ,0,2y,−2z

)
=−1⇒ znkp =

4yz
z− y

.

All other values can be deduced by simultane-
ous permutations and we have now all the values
for the fifteen points found on the incircle hy-
perboloid. As seen above (Remark 3.2), if the
triangle is isosceles, e.g. at C, x = y then the
corresponding point is at infinity.

5 The incircle ellipsoid.

We have seen that the orthocenters of the con-
jugate tetrahedra play an important role in this
geometric figure and so it becomes interesting
to examine the locus of the orthocenters, also a
surface, when A′,B′,C′, Ā′, . . . describe the hyper-
boloid.

This locus is easy to find because the orthogo-
nal projection of the orthocenters on the plane
of the base triangle is the Gergonne point of this
triangle (Ge) and there is an invariant relation of
the tetrahedron proved in [3, §6]: g2 +3n2 = r2

where r is the in-radius, g is the distance IGe and
n the altitude of the orthocenter about the plane
of the base triangle n = GeH ′′. Interpreting this
relation in cylindrical coordinates about the in-
center shows that this is the equation of an oblate
ellipsoid of revolution

EI : x2 + y2 +3z2 = r2, (3)

which, again, is inscribed in CI , the throat circle
of the incircle hyperboloid HI (2).

Therefore, because, to any set of points A,B,C
forming a triangle circumscribed about CI corre-
spond a single Gergonne point Ge and because,
when A,B,C describe the outer part of the in-
circle, Ge describes the inner part, we see that,
given a fixed circle, all the triangles which have
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Figure 4: The orthocenters lying on the ellipsoid
inscribed in the throat circle of the hyperboloid.

this circle as incircle have their conjugate Pavil-
let tetrahedra attached to these two tangent and
complementary surfaces (fig. 4).

5.1 Tangent plane to the ellipsoid at
the orthocenters.

Because we know the surface on which the ortho-
centers lie, we may look for the tangent planes
to the ellipsoid at these two points. As usual we
have more than one way to find it, let’s use a
pencil of quadric.

• The incircle sphere and incircle hyperboloid
form a pencil of quadrics. Their base curve
is the incircle, counted twice, and at each
point of the incircle they are tangent.

• Hence the incircle ellipsoid belongs to this
pencil. Of course, we could as well check

that, using (1), (2) and (3), we have

2SI−HI = EI.

• The polar planes of a point with respect to
a pencil of quadrics form a pencil of planes,
we apply this to one of the orthocenters.

• The polar plane of an orthocenter about the
incircle sphere is the corresponding upper
plane [3, Theorem 5.2].

• The polar plane of this orthocenter about the
incircle hyperboloid is the conjugate upper
plane (cf. Theorem 3.2).

• Both planes intersect at the Gergonne line
of the base triangle (§3.1, fig. 5).

• So the axis of this pencil of polar planes is
the Gergonne line,

• and the polar plane of the orthocenter about
the ellipsoid goes through the Gergonne line.

• Now the orthocenter lies on the ellipsoid
so its polar plane about this quadric is the
tangent plane at this point.

We have proved

Theorem 5.1 The tangent planes to the incircle
ellipsoid at the orthocenters intersect the hori-
zontal plane along the Gergonne line of the base
triangle.

We note that the eccentricity of the meridian el-
lipse x2+3z2 = r2 of the incircle oblate ellipsoid

is e =
√

2
3 and is a constant for any triangle or

incircle.

6 Conclusions.

We have shown that for a given circle, all triangles
circumscribed about this circle have the vertices
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Figure 5: The tangent planes to the ellipsoid at the orthocenters.

of their conjugate Pavillet tetrahedra lying on a
one sheet hyperboloid of revolution, equilateral,
which admit the incircle as its throat circle. Their
common apex is the center of symmetry of the
hyperboloid. We also have shown that the tangent
planes of five sets of three points of the hyper-
boloid (vertices of the upper triangles, vertices
of the contact triangle, lower and upper Nobbs
points) intersect on a common vertical line going
through the Gergonne point of the base triangle.
The polar properties with respect to the incircle
sphere, the sphere inscribed in the throat circle
of the hyperboloid, and with respect to the hyper-
boloid are either the same (orthocenters line) or
reversed (4th altitudes, upper planes, orthocen-
tric group). Finally the locus of the orthocenters
of the conjugate set of tetrahedra is also given,
an ellipsoid oblate part of the pencil of quadrics
formed by the incircle sphere and hyperboloid.
The Gergonne line of the base triangle lies on the

tangent planes to the ellipsoid at the orthocenters.

We have found a great deal of properties to this
new geometric figure and all the proofs are ex-
tremely simple.

Giving one more constraint to the triangle would
replace this two parameters problem by a one
parameter problem; the vertices and the orthocen-
ters would describe a curve which would lie on
one of these two surfaces. As a simple example,
we can consider the degenerate case of the Soddy
outer circle (Remark 3.1). In that case the ortho-
center will be such that the distance IGe =

r
2 , and

therefore the orthocenters will describe two sym-
metric horizontal circles on the ellipsoid. This
example and others deserve further studies. It
was mentioned in [3] that Richard Guy had ex-
tended the properties of the Pavillet tetrahedron
to the excircles so that another possible develop-
ment are the excircle hyperboloids, the extension

8



should be straightforward but the relationships
between the four hyperboloids can reveal inter-
esting properties.
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