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ABSTRACT: To the best of our knowledge, the orthocentric tetrahedron of a triangle is the first three
dimensional object directly associated with a triangle. Considering a triangle ABC on the horizontal
plane, called the base triangle, its incenter I, incircle CI and KLM its contact triangle, we draw the
vertical segments AA′ = AM, BB′ = BK, CC′ = CL. The orthocentric tetrahedron of ABC is the
tetrahedron A′B′C′I. Its main properties and the links with classical theorems of triangle geometry
are described in [7], others are described in [4]. The defining property of this tetrahedron is that the
orthogonal projection of its orthocenter on the plane of its base triangle is the Gergonne point of ABC.
Finding A′B′C′, called the upper triangle, from ABC and therefore the construction of A′B′C′I starting
from ABC is easy, theoretically and practically with a CAD software.
The paper develops a number of new properties for this object, they add further connections between
the triangle and its tetrahedron. The inverse problem is well defined if given a triangle A′B′C′ we can
find an orthocentric tetrahedron A′B′C′I and a base triangle ABC such that A′B′C′I is the orthocentric
tetrahedron of ABC. Using only the initial properties to solve the inverse problem can be graphically
intensive. In this paper, using new properties linked to the first twelve point sphere, we give an elegant
solution and a fast procedure to solve this inverse problem. Solid Geometry has evolved, it is now
more experimental and most of this research is done with software, so the paper will show additional
steps to solve it with a CAD software as an application of [6].
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1 Known Properties

We use the notations of figure 1. With the ortho-
centric tetrahedron comes the five polar spheres
of the orthocentric group [1, §833 p. 274], they
are: three vertex spheres: centered on A′, with
radius A′M = x

√
2, the incircle sphere, radius r,

the sphere having CI for diametral circle and an
imaginary sphere centered on the orthocenter, all
mutually orthogonal. The perpendicular to the
plane of the upper triangle at the orthocenter go-
ing through I, called the apex of the tetrahedron,
is called the fourth altitude .

The following properties will be used, they all
come from [7]:

a) The length m of the bimedian of the tetrahe-

Figure 1: notations

dron is given by

4m2 = A′I2 +B′C′2 = 2(x2 + y2 + z2)+ r2. (1)

b) The radical axis of the three vertex spheres is
the fourth altitude, IH ′ (fig. 2), of the tetrahe-
dron and the three spheres belongs to an inter-
secting coaxal net of spheres. The two common



points of the net are denoted P and Q.

Figure 2: Three vertex spheres and their radical
axis

c) The trace of the upper plane on the base plane
is the Gergonne line, Γ, of the base triangle (fig.
3).

Figure 3: Intersection upper plane base plane,
Gergonne line of ABC

d) Whatever the base triangle, the orthocentric
tetrahedron of a triangle is always acute. It
means, equivalently, either that the polar sphere
of the tetrahedron is imaginary, or that its ortho-
center is always within the tetrahedron or that all
faces are acute triangles.

Figure 4: Fourth altitude

2 Initial construction

Using only the initial properties of the tetrahe-
dron, we show, summarily, how, given a trian-
gle A′B′C′, to construct a base triangle ABC (in-
center I) so that its orthocentric tetrahedron is
IA′B′C′, i.e. IA′B′C′ has the triangle A′B′C′ as
upper face. The proof given here is constructive
and practical: it is done in such a way that it
can be done with the usual commands of a CAD
software, we do it as a direct application of [6].

Interestingly, we can easily draw the orthocen-
ter H ′ of A′B′C′, and the perpendicular to the
plane A′B′C′ going through H ′. This perpendic-
ular is the fourth altitude of the tetrahedron we
are looking for (fig. 4) therefore the apex I lies
on this altitude but we will not use this property.

1. Draw three circles with the sides of A′B′C′

as diameter. The circle with diameter A′B′

goes through the feet H ′a and H ′b of the alti-
tudes through A′ and B′ and intersects C′H ′c
at kc (fig. 4).

2. From vertex A′ of A′B′C′ as center, draw
a circle, CA′ , going through kc. Cycling
through the vertices draw the other two sim-
ilar circles. These three circles are orthogo-
nal (the angle Â′kcB′ is right) and their rad-
ical center is H ′, the orthocenter of the tri-
angle.
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Figure 5: Traces on the upper plane A′B′C′ of the
three orthogonal spheres

Therefore CA′ , CB′ and CC′ , are the great
circles of the three orthogonal spheres cen-
tered on the upper vertices of the tetrahe-
dron we are looking for (fig. 5). We have
constructed a cross-section of the coaxal net
of vertex spheres through the plane of cen-
ters of the net.

Remark 2.1 If the triangle is obtuse, then
H ′ is outside the triangle A′B′C′ and there-
fore one of the altitudes does not intersect
the circle having the opposite side for di-
ameter. There is no real solution.

3. Draw the three corresponding orthogonal
spheres SA′ , SB′ and SC′ (fig. 6).

4. Draw the three circles of intersection of
these three spheres CA′B′ , CB′C′ and CC′A′ ,
let P, Q be the common points of the net,
(fig. 7), as mentioned, PQ is the fourth alti-
tude.

5. Drawing the plane tangent to these three,
non coplanar circles, will give us three
points of contact which determine the plane
of the base triangle because they are the
contact triangle K LM of the base triangle
ABC (fig 2).

Now, even using software, the problem is

Figure 6: The three orthogonal spheres

to effectively find these three points. It can
be done by inversion about P (or Q) with
power PQ2. The three circles of intersec-
tion will give us a trirectangular trihedron
Qx,Qy,Qz, (axis ∆) and the plane of the tri-
angle will be transformed in a sphere, going
through P, tangent to the edges of the trihe-
dron (fig. 8). So we can draw this sphere,
find Tx, Ty and Tz its points of contact with
the edges of the trihedron and inverse back
to get K,L and M. This is a fairly lengthy
construction.

6. These three inversed points determine the
plane of the base triangle because they are
the contact triangle K LM of the base trian-
gle ABC. The apex I is the circumcenter of

Figure 7: Construction of the three circles of in-
tersection
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Figure 8: The sphere tangent to the trihedron

the triangle K LM found the step before.

7. This point is also the incenter of the trian-
gle which has this tetrahedron as orthocen-
tric tetrahedron. We get the three vertices
A,B,C of the base triangle either drawing
the perpendiculars to the plane K LM go-
ing through A′, B′, C′ and intersecting them
with the plane K, L, M or drawing the tan-
gential triangle of KLM, i.e. taking the in-
tersection of the three tangents at K,L and
M to the circumcircle of the triangle K LM.

Note that, because we have two choices for the
center of inversion, we have two identical solu-
tions symmetrical about the plane A′B′C′.

3 Properties linked to the cir-
cumcircle

To simplify this construction, we look for new
properties linked to the circumcircle of the base
triangle.

Once we construct the three great circles
CA′,CB′,CC′ of the the three vertex spheres (cf.
§ 2), we know their radii x

√
2, etc. Therefore,

we can also draw three concentric circles C ′A′, . . .
of radius x, . . . , they are the great circles of
three spheres S ′

A′ , . . . centered on the vertices
A′,B′,C′ which are tangent to the base plane at

A,B,C. We call them reduced circles and re-
duced spheres.

On the one hand, the d’Alembert line [3, p.
1261] of the three external centers of similitudes
of these three circles is easy to find. Because
the vertex spheres and the reduced spheres have
their radii in the same ratio,

√
2, this line is also

the line joining the external centers of similitude
of the three vertex spheres, therefore it is also Γ,
the Gergonne line of the base triangle ABC we
are looking for.

On the other hand, the radical axis of these
three reduced spheres is also perpendicular to the
plane A′B′C′ and therefore parallel to the fourth
altitude of the tetrahedron. This radical axis is
going through O, the circumcenter of the base
triangle, because the power of O about each of
these three reduced spheres is R2, where R is the
radius of the circumcircle.

We have already defined the incircle sphere (§1),
we similarly define the circumcircle sphere as
the sphere having the circumcircle of the base
triangle for diametral circle. It is orthogo-
nal to the three reduced spheres because again
the power of the circumcenter about the three
spheres is equal to R2.

The radical center of the three reduced spheres
and the circumcircle sphere is also on this par-
allel to the fourth altitude and the traces on the
plane of the base triangle of the three radical
planes of a reduced sphere and the circumcircle
sphere is the tangential triangle of the base tri-
angle (because the tangent to the circumcircle at
a vertex of the triangle is tangent to both the re-
duced sphere and the circumcircle sphere there-
fore has the same power about both spheres).

The essential new property is the following

Theorem 3.1 The centroid of the tetrahedron
lies on the radical axis of the three reduced
spheres.

To prove this we use a Theorem given by Court
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in [1, § 187 p. 57] about the square of the median
of a tetrahedron, if ga is the length of the median
going through A:

g2
a =

1
3
(
A′I2+A′B2+A′C2)−1

9
(
B′I2+C′I2+B′C′2

)
.

With our notation (fig. 1), we get

g2
a =

1
3
(
(2x2 + r2)+2(x2 + y2)+2(x2 + z2)

)
− 1

9
(
(2y2 + r2)+(2z2 + r2)+2(y2 + z2)

)
.

Therefore, the square of the length of the median
from A′ is given by

g2
a = 2x2 +

2
9
(y2 + z2)+

1
9

r2 (2)

and similarly.

We evaluate the power of the centroid of IA′B′C′,
denoted G′′, about the reduced sphere S ′

A′ cen-
tered at A′:

P
(
G′′/S ′

A
)
=

(
3
4

ga

)2

− x2

=
1

16
(
2(x2 + y2 + z2)+ r2) .

If we compare this result with the square of the
length of a bimedian (1), we can conclude that
the sphere centered on the centroid and going
through the midpoints of the side of the tetra-
hedron, i.e. the first twelve point sphere of this
orthocentric tetrahedron [1, § 798 p. 300], is or-
thogonal to the three reduced spheres.

Therefore both the circumcircle sphere and the
first twelve point sphere belong to the same in-
tersecting coaxal pencil, conjugate of the coaxal
net of spheres defined by the three reduced
spheres. The plane of centers, A′,B′,C′, of the
coaxal net formed by the reduced spheres is the
upper face of the tetrahedron. Now the trace on
the upper plane of the first twelve point sphere
being the Euler circle of the upper triangle this
circle is the basic circle of the pencil. We have
found that

Corollary 3.1 The first twelve point sphere of
the orthocentric tetrahedron of a triangle and
the circumcircle sphere of this triangle have the
same trace on the upper face of the tetrahedron:
the Euler circle of the upper triangle,

and, the line of centers of the pencil being paral-
lel to the fourth altitude,

Corollary 3.2 The Euler line of the orthocen-
tric tetrahedron of a triangle belongs to the
plane perpendicular to the upper face and go-
ing through the circumcenter and the incenter of
the basic triangle.

Lots of other properties are direct consequences
of Theorem 3.1, e.g.

a) the orthogonal projection of the circumcenter
of the base triangle on the upper plane is the cen-
ter of the Euler circle, ω ′, of the upper triangle.

b) The orthogonal projection of the line OI of the
base triangle ABC on the upper plane is the Euler
line of the upper triangle A′B′C′. Both lines in-
tersect on the Gergonne line of the base triangle.

Most of these properties are represented on Fig-
ure 9.

4 The 4th Median and the
Housel Line

We define the 4th median of the tetrahedron as
we defined its fourth altitude, the median going
through the apex I. We now consider the me-
dial triangle DEF (defined in [2, § 96 p. 68]) of
the base triangle ABC, its incenter i, the Spieker
Center [5, §364 p. 226], and the Housel line, IG,
of ABC (defined in [3, p. 1260]) which is such
that

# »
IG = 2

#»
Gi. We have the following property

Theorem 4.1 The orthogonal projection of the
centroid of the orthocentric tetrahedron of a tri-
angle on the plane of this triangle lies on the
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Figure 9: Cross-section along the plane OIH ′

Housel line of the triangle and is the harmonic
conjugate of the incenter of the medial triangle
of this base triangle about its centroid and its
incenter.

We call G′ the centroid of the face A′B′C′ and
g′′ the projection of G′′ on the base plane so
that IG′ is the fourth median of the tetrahedron
(fig. 10). Because ABC is the orthogonal projec-
tion of A′B′C′, the orthogonal projection of G′

on the base plane is G, the centroid of the base
triangle. We have

#    »

IG′′ =
3
4

#   »

IG′⇒
#   »

Ig′′ =
3
4

# »
IG,

therefore we have
g′′G
g′′I

=
1
3

and
iG
iI

=
1
3
⇒ (I,G,g′′, i) =−1.

We conclude that g′′ is also the X(1125) point in
the Encyclopedia of Triangle Centers. It is also
easy to check that i is the orthogonal projection
on the plane of the base triangle ABC of the point
i′ reflexion of I in G′′ and that the orthogonal
projection of i′ on the plane of the upper triangle
is the circumcenter O′ of A′B′C′. Of course, with
the same notations, we could as well use the fol-
lowing proof and rediscover the property of the
Housel line the following way

(H ′,G′,ω ′,O′) =−1⇒ (I,G′,G′′, i′) =−1

6
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Figure 10: The 4th Median and the Housel Line
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⇒ (I,G,g′′, i) =−1⇒ # »
IG = 2

#»
Gi.

Moreover on the line Oω ′, we will also find the
centroid of the tetrahedron N′A′B′C′ and the first
twelve point sphere of this tetrahedron belongs
to the coaxal pencil defined by the circumcircle
sphere and first twelve point sphere of IA′B′C′.

5 Triangle geometry

We find in [5, §310 p. 197] the following theo-
rem (applied to the triangle A′B′C′),

Theorem 5.1 The sum of the powers of the ver-
tices with regards to the Euler circle is 1

4
∑

a′2.

From fig. 1 we have, applying Pythagoras,
twice, a′2 = 2(y2 + z2) so that∑

a′2 =
∑

2(y2 + z2) = 4
∑

x2. (3)

Now, because the Euler circle, E ′, of the upper
triangle is orthogonal to the three reduced circles
C ′A′ , radius x, . . . , we find that

P
(
A′/E ′

)
= x2 = P (A/CI) .

Hence we have the

Theorem 5.2 The power of a vertex of the upper
triangle with regard to its Euler circle is equal
to the power of the corresponding vertex of the
base triangle with regard to the incircle.

Therefore, from (3),∑
P
(
A′/E ′

)
=
∑

x2 =
1
4

∑
a′2.

This is a new proof of Theorem 5.1 but it also
gives us a very different insight about this theo-
rem.

Remark 5.1 This gives an interesting solution
to the following question of plane triangle ge-
ometry:

Given a triangle, its Euler circle and a set of
three circles centered on the three vertices or-
thogonal to the Euler circle, show that if we mul-
tiply the radii of the three circles by

√
2, then the

new set of circles has its radical center at the
orthocenter of the triangle.

6 Inverse problem

To construct the triangle ABC, we draw the Eu-
ler circle, center ω ′, of the upper triangle, three
tangents to this circle from the vertices A′, B′, C′

(e.g. B′Tb fig.11). It gives the radii of the re-
duced circles (e.g. y = B′Tb) and therefore the
three reduced circles and spheres (e.g. S ′

B′).

Remark 6.1 Note that if the triangle is obtuse
one of the vertex is inside the Euler circle and as
announced, the problem has no real solution. If
it is right we fall back on the degenerate case we
started with in the extended abstract.

We construct two of the external centers of simil-
itudes Sbc and Sca of C ′A′,C

′
B′ and C ′C′ , it gives

Γ, the Gergonne line of ABC (§3). The plane
tangent to any of these three spheres and going
through this Gergonne line is the plane of the
base triangle ABC. The points of tangency of the
base plane with each of the reduced spheres are
the three vertices A,B,C we are looking for.

To get them, we use the section (of a solid by a
plane) command of a CAD software and we con-
sider the pencil of planes having the Gergonne
line for axis.

• The trace of this pencil on one of the sphere
is a coaxal pencil of circles with limiting
points on the sphere [8, §967 p. 280].

• Therefore using a line ∆p perpendicular to
the plane A′B′C′ (e.g. at B′ fig. 12) through
the center of the sphere, we take a point p1
on this line, inside the sphere, and we sec-
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Figure 11: Three reduced circles and the
D’Alembert line

tion the sphere by the plane p1, Sbc and Sca
to get a circle Cp1.

• We mark the center Cp1 of this circle. We
do this with a second point p2, marking the
center Cp2.

• We section again the sphere with the plane
going through B′, the center of the sphere,
and the two marked centers Cp1,Cp2. We
get a new circle Ccb′ .

• The intersection Bu (or Bd) of this cir-

Figure 12: Pencil of circles on the sphere S ′
B′

Figure 13: Construction of the 2 symmetrical
points of tangency

cle with the circumcircle of the triangle
B′,Cp1,Cp2 gives the point of tangency as
an orthogonal intersection (fig. 13).

Doing this operation for the three vertices gives
us A,B,C and from there we get I, a very easy
solution to the inverse problem. Up to a symme-
try about the plane of the upper face, the solution
is unique.

7 Conclusions

Associating tri-dimensional objects to a triangle
is a fruitful operation, we could call this "‘Solid
Triangle Geometry"’. In [7] we associated an or-
thogonal tetrahedron and the incircle sphere cen-
tering the research on the fourth altitude, here
adding the circumcircle sphere, we have proved
new properties linked to the Euler lines and the
4th median. They show how connected the tri-
angle is with its orthocentric tetrahedron. Using
some of these new properties we derive a con-
struction procedure for the inverse problem and
show that, up to a symmetry, we have a single
solution.

The correspondence between any base triangle
and the acute upper triangle of its orthocentric
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tetrahedron being one to one, we have found that
an arbitrary orthocentric tetrahedron is not nec-
essarily the orthocentric tetrahedron of a trian-
gle. For a given acute triangle, there is only two
symmetrical points lying on the perpendicular
to its plane going through its orthocenter which
gives the apex of such a tetrahedron. If it does,
the property would, in the general case, apply to
a single face of this tetrahedron.

Finally, though Euclidean Solid Geometry is a
very mature discipline, this paper illustrates that
there are potentially a lot of beautiful properties
left to discover and the use of software may fa-
cilitate this process.
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